Adaptation of rescue robot behaviour in unknown terrains based on stochastic and fuzzy logic approaches

نویسندگان

  • Ashraf Aboshosha
  • Andreas Zell
چکیده

The purpose of this article is to provide rescue robots with an adaptive behaviour during searching for victims in disasters such as fire, earthquake, flood, wars etc. This experimental research work took place in previously unknown dynamic indoor terrains. The main phases of this framework are; 1) modelling of robot behaviours/dynamics in collapsed environments, 2) designing an adaptive controller, which regulates robot longitudinal velocity and heading (collision avoidance) based on the obstacles distribution histogram, 3) prediction of robot behaviours in another unknown terrain. Two approaches have been used to design the adaptive controller: the first one is the stochastic control theory, based on Kalman filter algorithms [10][8]. The second approach relies on fuzzy inference systems (FIS) [5][17][7]. Throughout this work, robot dynamics have been modelled using the auto regressive exogenous (ARX) scheme, while ARX model parameters have been identified using recursive least squares (RLS) [18]. This contribution presents a description and some discussion of the discrete Kalman filter, modelling techniques, and some discussion of robot behaviour analysis. Furthermore, the design of adaptive controllers using FIS-based techniques versus stochastic control systems has been demonstrated. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)

In recent years, soft computing methods, like fuzzy logic and neural networks have been  presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Mobile robot wall-following control using a behavior-based fuzzy controller in unknown environments

This paper addresses a behavior-based fuzzy controller (BFC) for mobile robot wall-following control.The wall-following task is usually used to explore an unknown environment.The proposed BFC consists of three sub-fuzzy controllers, including Straight-based Fuzzy Controller (SFC),Left-based Fuzzy Controller (LFC), and Right-based Fuzzy Controller (RFC).The proposed wall-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003